

Ridesa

Universidade Federal de Viçosa Molecular Plant Physiology Laboratory Plant Physiology Graduate Program Plant Biology Department

Sugarcane biological diversity, breeding and molecular characterization of elite genotypes for ethanol biomass production

Marcelo Ehlers Loureiro mehlers@ufv.br

Actual importance of lignocellulosic alcohol in the brazilian context

- →Increase in internal demand (flexi-fuel vehicles)
- → increase in brazilian exportation of alcohol (increased international demand)
- ➔ high petroleum prices
- → brazilian production of biodiesel (ethanol used in the transesterifications of FA;5%)

Key points in lignocellulose alcohol technology (Workshop Energy Cane 2007)

- Characterization of variability in sugarcane culm cell wall e its effect in alcohol production
 Establish standard technologies to evaluation of lignin
- ✓ Identify germoplasm and breeding for energy cane
- ✓ Development of pre-treatment and hydrolysis technology of sugarcane bagasse
- Improvement of fermentation technology

What sugarcane breeding can help us to improve lignocellulosic alcohol production?

RIDESA

Rede Interuniversitária para o Desenvolvimento do Setor Sucroalcooleiro (Academic Network for the Development of Sugar-Alcohol Sector)

>> UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO

>> UNIVERSIDADE FEDERAL DE ALAGOAS

>> UNIVERSIDADE FEDERAL DE GOIÁS

>> UNIVERSIDADE FEDERAL DE VIÇOSA

» UNIVERSIDADE FEDERAL DE SÃO CARLOS

🛑 > UN IVERSIDADE FEDERAL DO PARANÁ

Network responsable for 57% of sugarcane cultivated area

Successful interaction with private companies: no need of public money

Universidade Federal de Viçosa Centro de Ciências Agrárias Departamento de Fitotecnia

http://www.pmgca.com.br/site/

Domingo, 7 Setembro, 2008

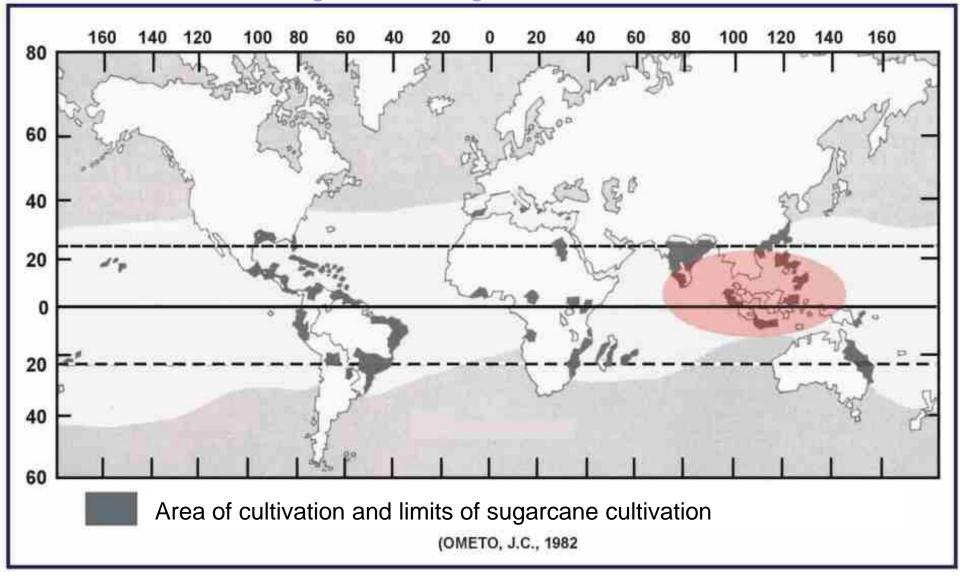
Programa de Melhoramento Genético da Cana-de-Açúcar

Home PMGCA Histórico Equipe Cultivares e clones RB Infra-estrutura Parcerias Publicações Contato Acesso restrito

Seja bem vindo ao Programa de Melhoramento Genético da Cana-de-Açúcar, PMGCA, do Departamento de Fitotecnia da Universidade Federal de Viçosa.

O PMGCA - UFV tem por objetivo principal desenvolver cultivares de cana-de-açúcar por meio da cooperação técnica firmada com usinas e destilarias produtoras de açúcar, álcool e energia em Minas Gerais.

A UFV possui o único programa público de melhoramento genético da cana-de-açúcar em Minas Gerais e desenvolve cultivares e clones RB em parceria com outras universidades federais que constituem a **RIDESA**.



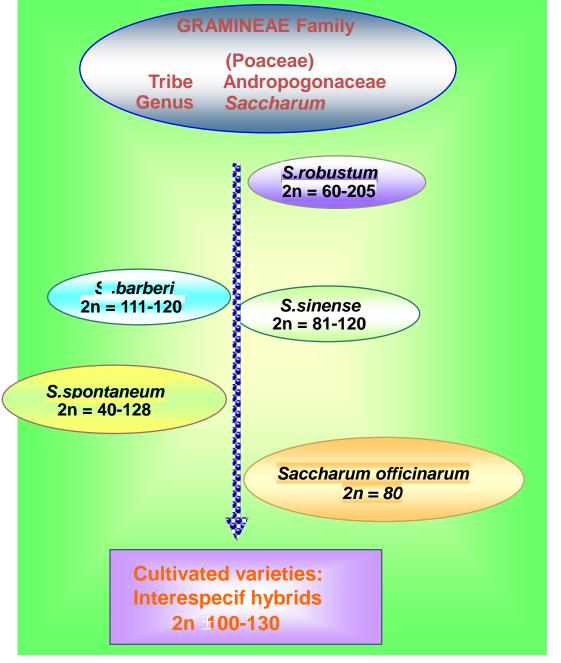
Genotype evaluation in 34 different field trials experiments annual

MD7 Layouts

Yearly, only at Ridesa/UFV, 200000 clones are evaluated

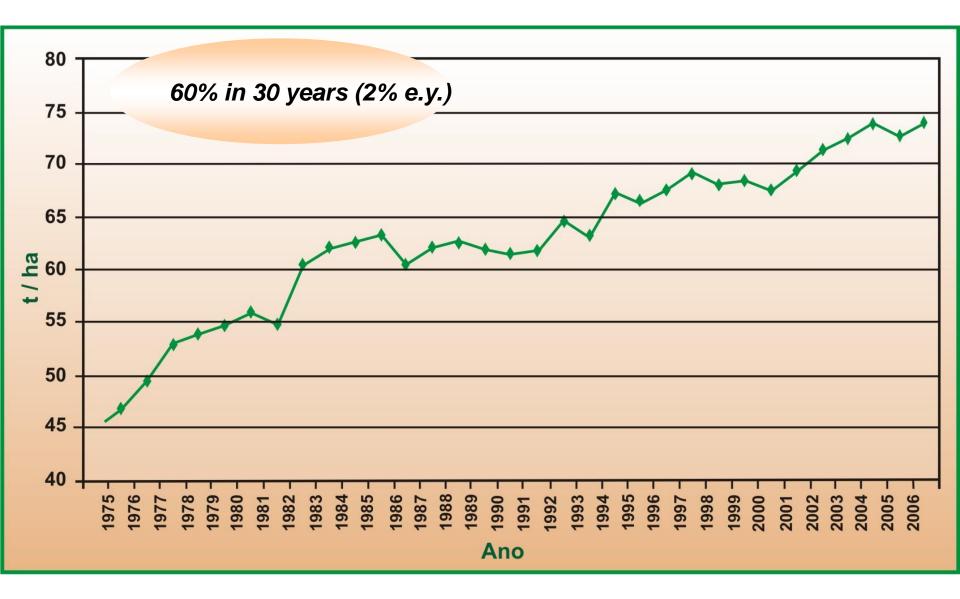
Sugarcane origin and cultivation

Stalk growth is inhibited by temperatures lower than 21°C

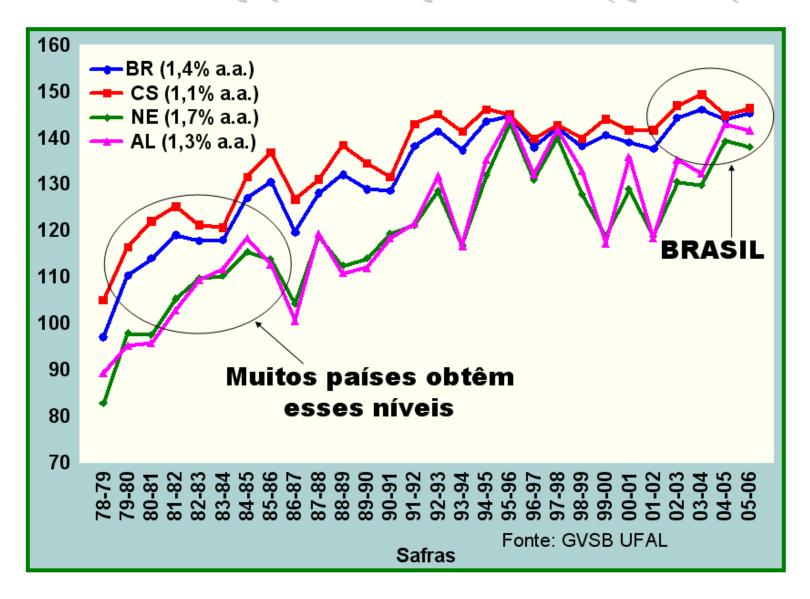

Sugarcane Germplasm

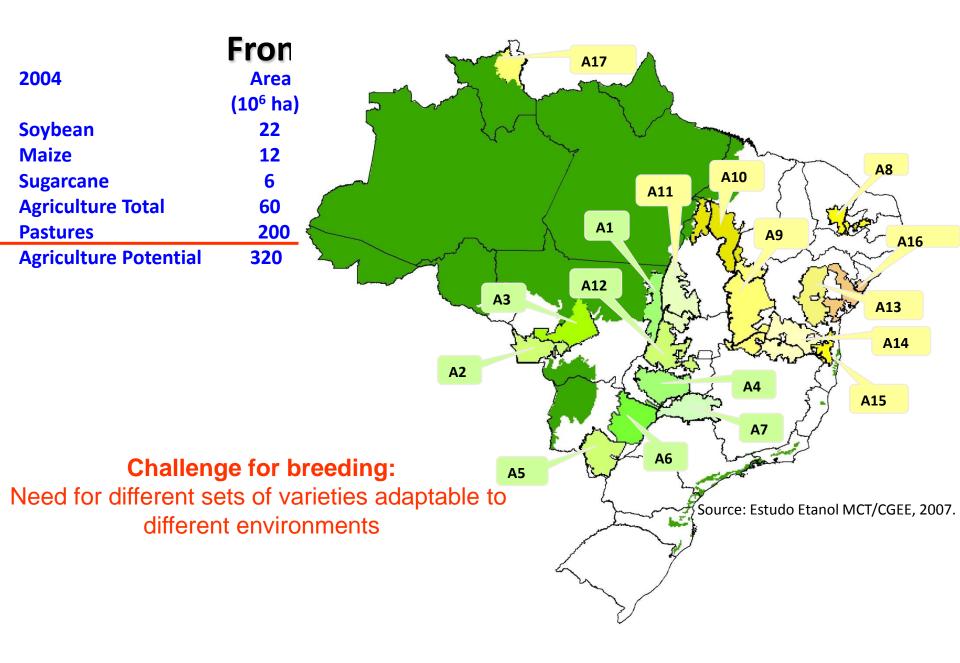
- Wild cane (S. spontaneum)
- Wild cane (S. robustum)
- Wild cane (Erianthius arundinaceus)
- Wild cane (*Miscanthus species*)
- Noble cane (S.officinarum)
- Sugarcane (advanced interspecific hybrids)

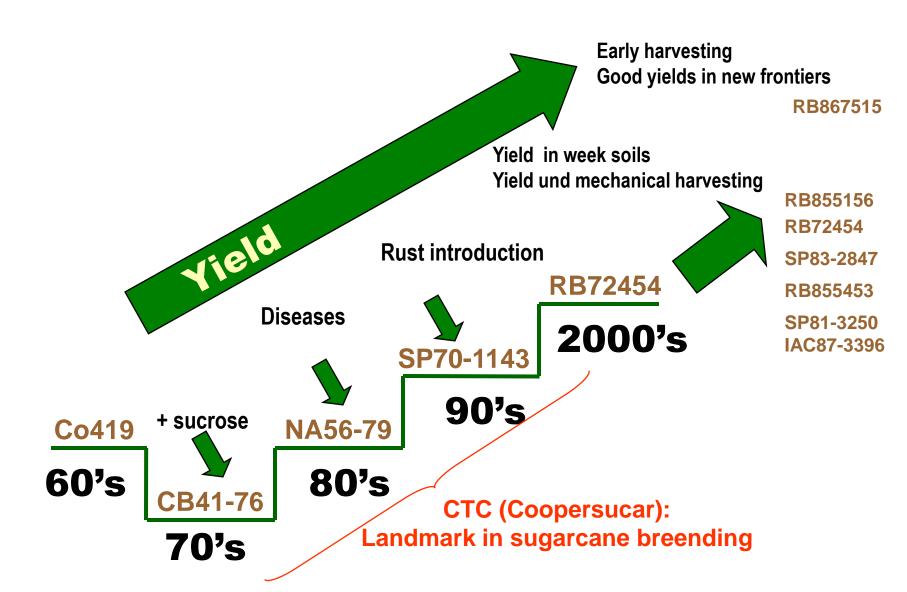
S. officinarum: high sugar, low fiber, low yield, poor ratooning ("soca") and low pest resistance


- **S.** *spontaneum*: low sugar, high fiber, low yield, excellent ratooning and disease resistance, hybrid vigour when crossed
- S. robustum: Medium sugar, high fibre, low yield, medium ratooning
- Erianthus: low sugar, high fibre, medium yield, excellent ratooning
- *Miscanthus*: low sugar, high yield, adopted to cooler climate

Polyploids Aneuploids


Complexity of the sugarcane genome \rightarrow higher than any important polyploid crop

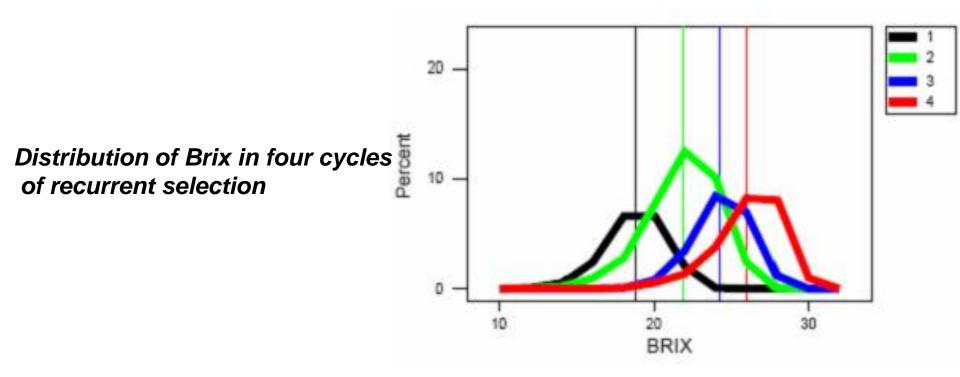

Evolution of sugarcane yeld in Brazil (t/ha)


Theoretical potential: 350 t/ha

Main Brazilian sugarcane cultivars in the last 50 years

Method of choice for sugarcane breeding

→Method of recurrent selection


Characteristics of recurrent selection

 \checkmark Increasing the frequency of favourable alleles \rightarrow repeated cycles of selection and crossing

✓ Favor additive genetic effects

✓Maintaining genetic variation in breeding populations

✓Ex; Increase sugar levels

Multiparental cross

Biparental crosses

Actual RIDESA breeding parameters

Productivity

- Stalk sucrose content
- Stalk sprouting after mechanical harvesting
- ✓Longevity
- ✓ Disease resistance
- Low susceptibility to flowering

New RIDESA breeding at UFV beggining in 2008

Energy cane:

Higher biomass production keeping or increasing sugar production/area
 Low lignin and/or changed lignin composition

Actual sugarcane interespecific hybrids culm composition

Water	73-76
Total Solids	24-27
Total Soluble Sugars	10-16
Fiber (DW)	11-16%

50% of its dry weight as sucrose

Component	Energy (MJ/tc)
150 kg sugars	2500
135 kg of stalk fiber	2400
140 kg of leaf fiber	2500
Total	7400 (0.176 Toe)

Conversion Efficiency

1st Generation

1) 86 L ethanol + 10.8 kg bagasse (DM) = 2200 MJ \rightarrow efficiency = 29.8%

2) 86 L ethanol + 60 kWh = 2230 MJ → efficiency = 30.1%

Alcohol production using only sucrose : wasting of energy

Alcohol production using sucrose and burning bagasse for thermical energy : still waste of energy: 70% of energy present in sugarcane is lost

Energy cane: the future of alcohol production

Sugarcane & Multipurpose cane

Varieties>	B77602	WI81456
Cane t/ha	77.6	125.4
Brix t/ha	15.1	15.3
Fibre t/ha	11.5	30.0
Dry matter (Brix+fibre) t/ha	26.6	45.3
Tops %	17.8	17.3
Biomass (C+T) t/ha	91.4	147.1

Source: Rhao S. (2006)

Production of lignocellulosic alcohol: Possible to double the ethanol production: increase from 6.000 L/ha to 12.000 L/ha

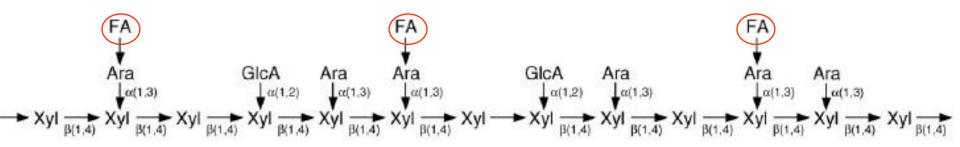
Potential : 1 ton cana \rightarrow 160 L cellulosic ethanol: 19000L/ha

Sugarcane have different cell walls than Dicots

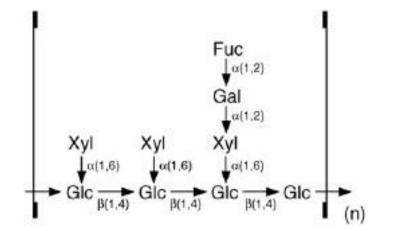
	Primary wall		Secondary wall		
	Grass	Dicot	Grass	Dicet	
Cellulose	20-30 ^{5.6}	15-30 ^{q.d.e}	35-45°.	45-50°	
Hemicelluloses					
Xylans	20-40 ^d	5°	40-50°.9	20-30 ⁹⁻⁹	
MLG	10-30 ^d	Absent	Minor	Absent	
XyG	1-50.0.9	20-259	Minor	Minor	
Mannans and glucomannans	Minor	5–10 ^d	Minor	3-5°	
Pectins	5°	20-35 ^d	0.1°	0.1ª	
Structural proteins	1 ^d	10 ^{d,e}	Minor	Minor	
Phenolics					
Ferulic acid and p-cournaric acid	1-5 ^{c.d}	Minor (except order Caryophyllales)	0.5-1.5°	Minor (except order Caryophyliales)	
Lignin	Minor	Minor	20 ^e	7-10°	
Silica			5-15°	Variable	

Source: Vogel (2008)

Our sugarcane cultivars:


50% em α-cellulose, 25-30% hemicelluloses 10-25% de lignina

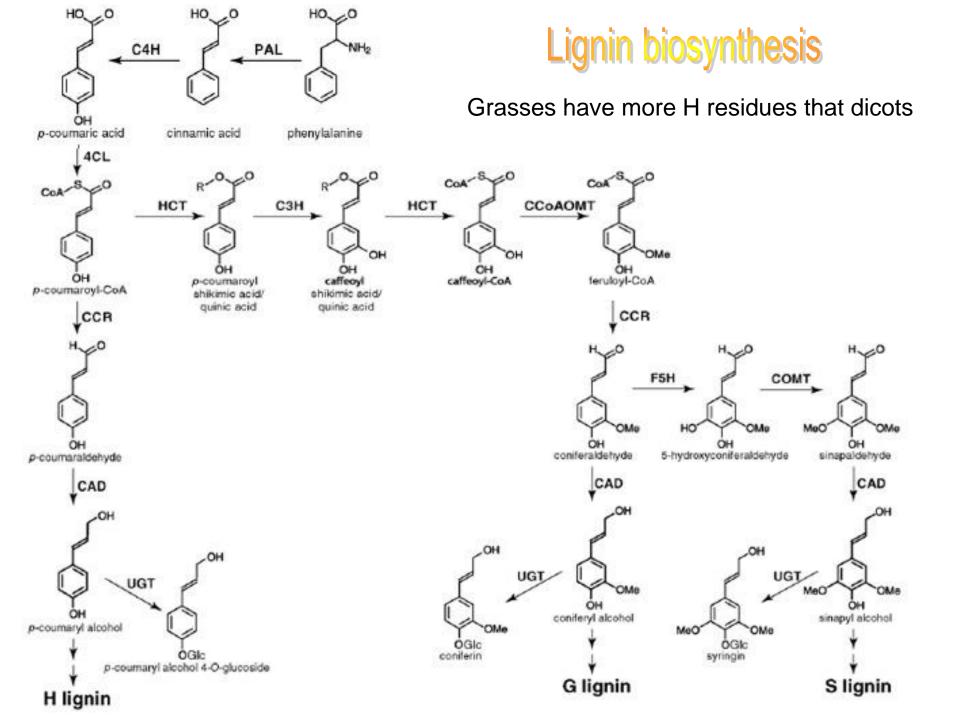
Importance of hemicellulose composition for ethanol production


>Ferulic acid crosslinkage of hemicellulose inhibits saccharification

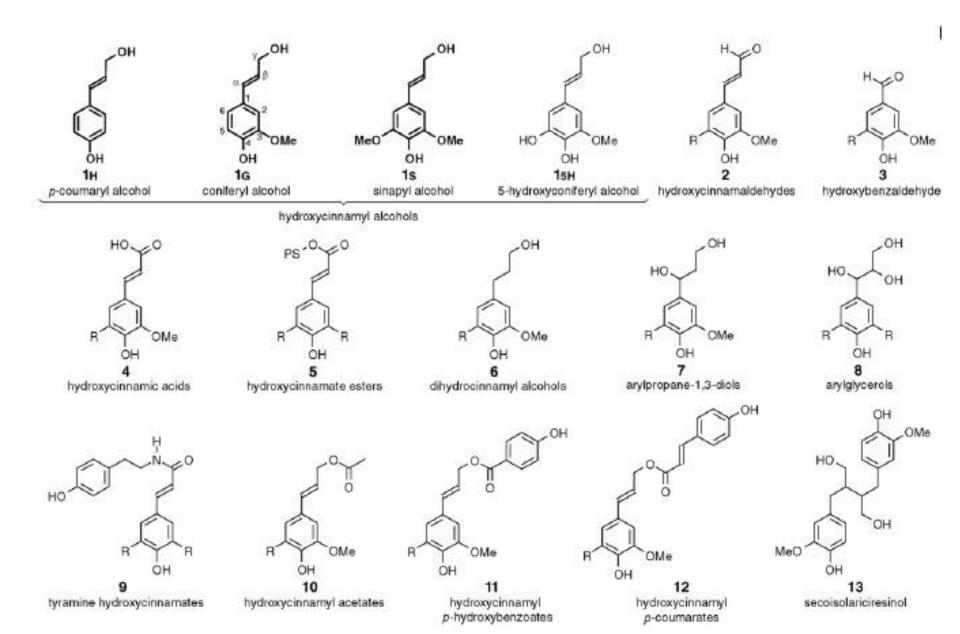
- > We do not know nothing about the dinamic of this process
- > We do not know about the structure of this crosslinkages

Hemicellulose structures and functions in grasses

Glucuronoarabionoxylans (GAXs) → major role in crosslinking cellulose microfibrils


β- glucans (MLG) \rightarrow tightly coat the cellulose microfibrils

Importance of lignin for ethanol production


- ✓ Lignin produces inhibition of saccharification enzymes
- ✓ Reduction in cellulose hidrolytic activities due to adsorbtion of enzymes to lignin
- ✓Inhibition of fermentation

≻Lignin: key control point in determining the efficiency of biofuels production

Challenge for sugarcane lignocellulosic ethanol biotechnology:
 To mitigate the negative effects of lignin in cellulosic ethanol production

Lignins are more complex that says the textbook Not only H, G, S, but ...

Lignin can be engineered with large changes in H/G/S rations

Effects on lignin content and H/G/S composition in various mutant and transgenic plants with altered monolignol biosynthesis wild type Total lignin G Gene(s) н S S/G References PALI 1/1 [3.6, 49]PALT /No changes 1/No changes 1/No changes n.a. [3] C4H [3,6] C4H1 No changes No changes No changes No changes [3] n.a. No changes 4CLI [3] HCT [6,13,15**] C3H1 [3.14"] n.a. /No changes CCOAOMT 1/No changes/1 [3,6,10] CCRI [3,7,17] F5H1 1/No changes [3,6] n.a. F5H1 1/No changes [3] n.a. 1/No changes/1 1/1 COMT [3,6,10] n.a. COMT1 No changes No changes No changes No changes [3] n.a. CAD 1/No changes 1/No changes 1/No changes 1/No changes [3,12] n.a. 4CL_F5H n.a. [3] n.a. n.a. 1/No changes CCOAOMT_ COMT_ 1/No changes [3,10] n.a. CCR1 COMT1 n.a. [3] n.a. n.a. CCR CAD [3] n.a. COMT_CCR_CAD [3] n.a. n.a. n.a. n.a.

Vanholme et al (2008)

Frequently other undesirable phenotypes: dwarfing, collapse of vessel elements and increased susceptibility to fungal pathogens, etc

Dixon group (2007): alfalfa: transgenic idenpendently downregulated in 6 lignin genes: Doubling in sachararification efficiency

Possible targets that could mitigate the negative effects of lignin in ethanol production

✓ Reducing the amount of lignin

✓ Changing the lignin composition (reducing coniferyl and guaiacyl content)

✓ Changing the patterns of lignin polymerization:

✓ through manipulation of the activity of monolignol-specific oxidases (peroxidases and laccases)

✓ Introducing molignols more eaily degradable (phenolic esters: p-coumarate and phydroxybenzoate, hidroxycinnamic acid amides

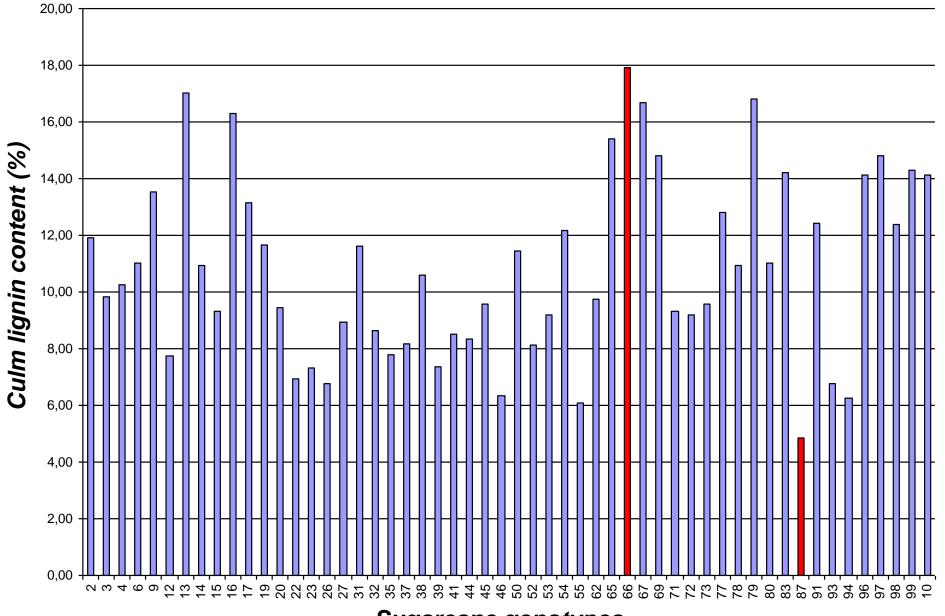
✓ Reduce the acetylation of lignin and transform plants (inducible promoters)

 ✓ To discover new enzymes to degrade lignin (complete genomic sequence of *Phanerochaete chrysosporium* ("white rot fungi") and termites (metagenome sequencing of gut flora of *Nasutitermes*)

RIDESA: Breeding for energy cane

Considerable genetic potential for biomass is present in the sugarcane germplasm

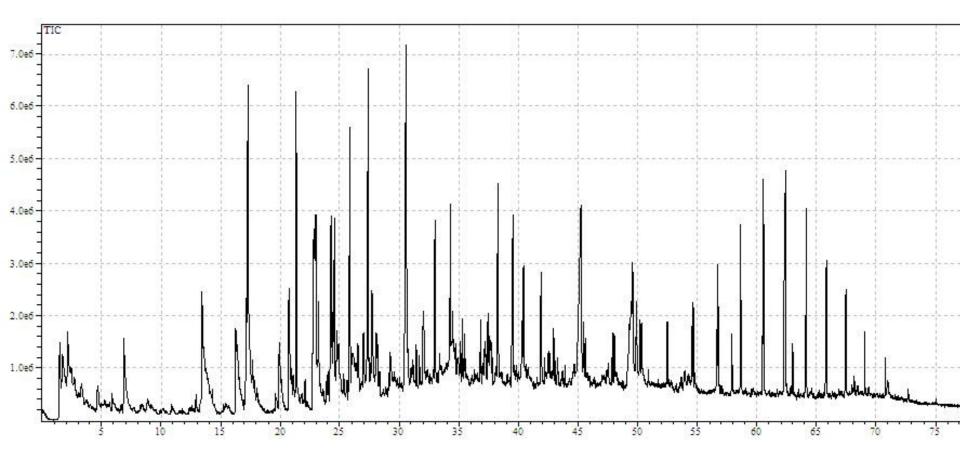
- Extensive and long term breeding program is needed to produce high biomass varieties with desired characteristics (8-10 years)
- Important to get adequate number of families and seedlings are needed to maintain high probability of selecting right variety

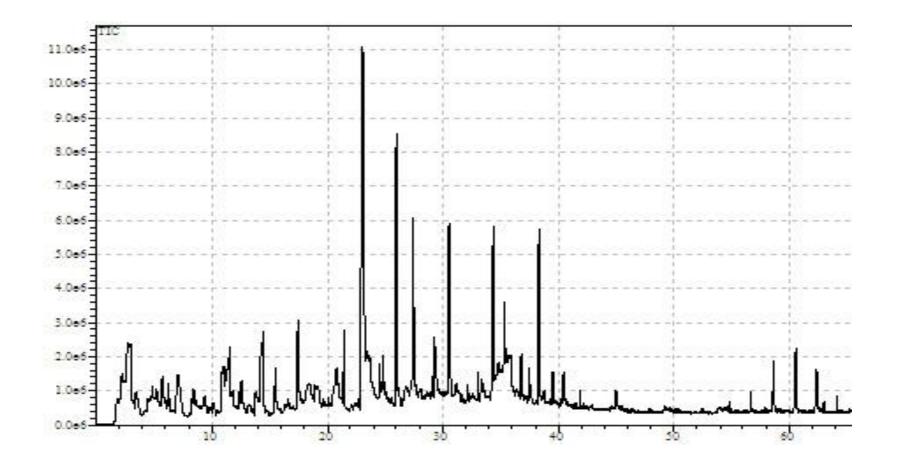

Past selection may have altered genome composition and shifted gene frequencies

Need to ensure right genes for appropriate fiber occur in the breeding population

What to do to beginning?

- 1) Characterize genetic diversity of culm cell wall compositon
- 2) Develop analytical methods for cell wall characterization for large scale phenotyping
- 3) Test the the effects of diversity in cell wall composition
- 4) Select the progenitors for recurrent selection


Characterization of variability culm lignin content

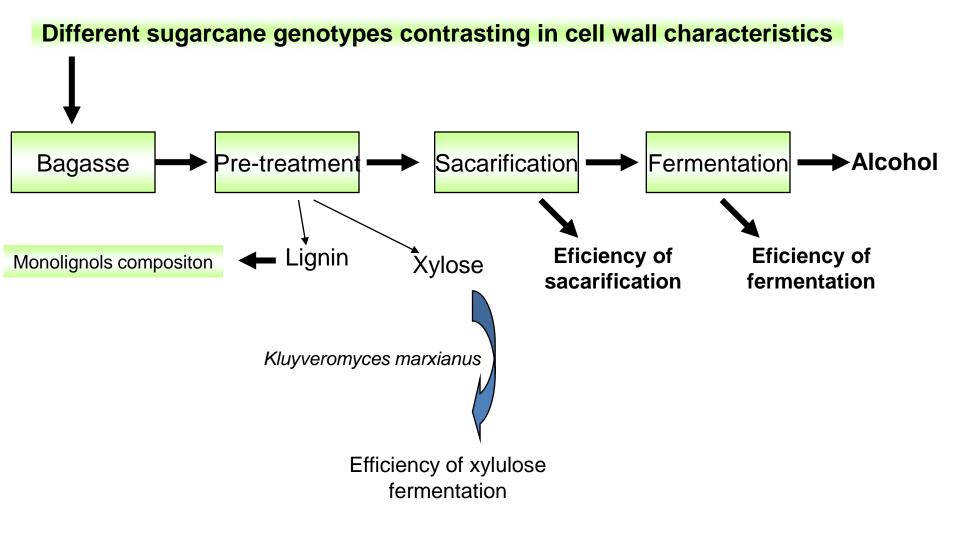

Sugarcane genotypes

Methods for large scale cell wall phenotype characterization

Pyrolysis+GC/MS: purified lignin from sugarcane stalks (TIC)

Pyrolysis+GC/MS: extracted cell walls from sugarcane stalks (TIC)

	1	A	В	C	D	E	F	G	н	1
3	BT		area	Rel. Area(RA)						
4	0000	6,871	10.335.933	1,234	furfural	С				
5	ŝ	13,377	19.105.567	2,282	fenol	LH		Guaiacila	Area	Abs. Area
6	2	16,273	12.873.203	1,537	2-metilfenol	LH		Guaiacol	5,727	47.953.161
7	ş	17,151	10.962.318	1,309	p-metilfenol	LH		4-Metilguaiacol	4,659	39.006.239
8	a	17,302	47.953.161	5,727	guaiacol	LG		4-Vinilguaiacol	0,47	3.938.201
9		19,926	8.984.299	1,073	2.6-dimetilfenol	LH		Vanilina	0,943	7.897.125
10		20,737	15.963.174	1,906	3.5-dimetilfenol	LH			11,799	98.794.726
11		21,369	39.006.239	4,659	4-metilguaiacol	LG				
12	1	22,796	28.487.109	3,402	1.2-benzenodiol	LH				
13	ŝ	22,948	30.059.521	3,590	2.3-diidrobenzofurano	С		Siringila		
14		23,127	3.878.301	0,463	2.3-diidrobenzofurano	С		4-Etilsiringol	1,451	12.152.408
15	ş	23,227	11.575.426	1,382	m-isopropilfenol	LH		4-Vinilsiringol	2,155	18.044.788
16		24,279	25.433.819	3,038	3-metoxicatecol	LM		Homosiringaldeído	1,019	8.531.164
17	6 F	24,527	14.675.723	1,753	4-etilguaiacol	LG		Acetosiringona	2,247	18.817.394
18	1	24,645	2.872.992	0,343	2-metilbenzeno-1.4-diol			Siringilacetona	1,547	12.954.562
19		24,86	3.938,201	0,470	4-vinilguaiacol	LG			8,419	70.500.316
20		26,973	7.929.216	0,947	Phenol, 3,4-dimethoxy-	1.1.1.1.1.1			C 35.3445	
21	ĝ.	27,384	47.268.378	5,645	siringol	LS		19		
22		27,703	15.631.309	1,867	3.4-dimetoxifenol	LS		S/G	0,713535	0,713604044
23	1	28,372	2.170.437	0,259	tetradecano	3		13		84
24		29,069	2.197.936	0,263	eugenol	LG				
25		29,252	7.897.125	0,943	vanilina	LG				
26		30,569	49.519.322	5,914	metilsiringol	LS				
27		31,406	3.716.676	0,444	G-CH=C=CH2	LG				
28		31,631	2.784.585	0,333	G-CH=C=CH2	LG				
29	6	32,009	11.039.243	1,318	acetoguaiacona	LG		2		
30		32,983	12.152.408	1,451	4-etilsiringol	LS				
31	ų	33,344	1.452.582	0,173	guaiacilcetona	LG		3		
32		34,252	18.044.788	2,155	4-vinilsiringol	LS				
33		34,508	11.167.448	1,334	hexadeceno					
34))	34,709	2.798.232	0,334	hexadecano					
35		35,327	4.031.210	0,481	4-alilsiringol	LS				
36		35,492	3.322.868	0,397	4-propilsiringol	LS				
37	ŝ.	36,787	4.453.314	0,532	cis-4-propenilsiringol	LS		9		
38		37,442	8.531.164	1,019	siringaldeido	LS				
39	1	38,278	18.233.009	2,178	trans-4-propenilsiringol	LS		1		
40		39,488	18.817.394		acetosiringona	LS				
41		40,459	12.954.562	1,547	siringilacetona	LS				
42		41,879	10.699.088		propiosirigona	LS				
43		42,578	2.493.674	0,298	ftalato	1.11				
44		43,07	2.932.034	0,350	hidrocarboneto	1				
45	8	45,232	41.474.762	4,953	ácido hexadecanóico	2		3		
46		45,457	3.957.666	0,473	hidrocarboneto					
47	3	45,593	2.365.471	0,283	hidrocarboneto	3				
48		47,885			nonadeceno ktrativo 🖌 sem extra					

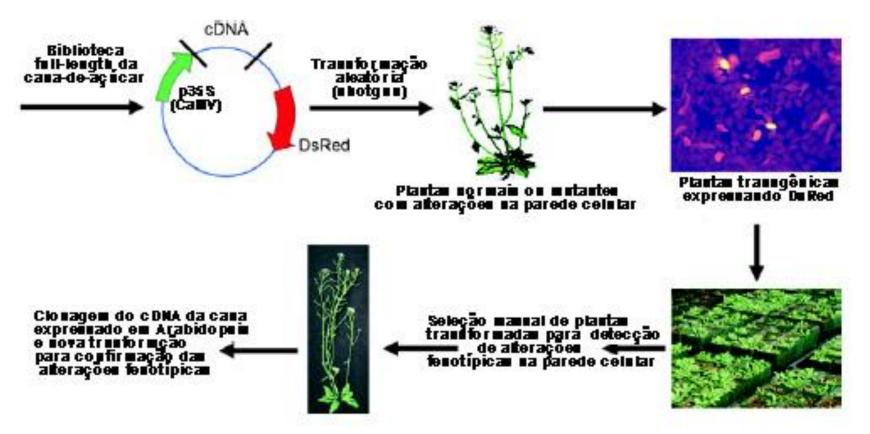

53 butar 18 3-fur 44 2(5H 14 5-me 91 guaia	o acético nodial raldeido I)-furanona	C C C				
18 3-fur 44 2(5H 14 5-me 91 guaia	raldeido					
44 2(5H 14 5-me 91 guaia	Page 1 and 1	C				
14 5-me 91 guaia)-furanona	No. 1	Guaiacila	AR		
91 guaia	A CONTRACTOR CONTRACTOR	C	Guaiacol	3,791		
	etil-2(3H)-furanona	C	4-Metilguaiacol	1,856		
5.C 4	acol	LG	4-Vinilguaiacol	8,939		
56 4-me	etilguaiacol	LG	Vanilina	2,163		
218 2.3-d	diidrobenzofurano	C		16,749		
64 4-etil	iguaiacol	LG	Siringila			
45 3-me	etoxicatecol	LM	4-Etilsiringol	4,792		
39 4-vin	nilguaiacol	LG	4-Vinilsiringol	4,204		
39 siring	gol	LS	Homosiringaldeido	1,232		
51 euge	enol	LG	Acetosiringona	0,968		
63 vanili	lina	LG	Siringilacetona	0,968		
92 4-me	etilsiringol	LS		12,164		
	ovanilina	LG				
11 4-hid	droxivinilguaiacol	LG	S/G	0,73		
17 4-etik	ilsiringol	LS				
80 guaia	acilcetona	LG				
04 4-vin	nilsiringol	LG	Simi	lar valu		
33 4-alile	Isiringol	LS				
03 cis-4	4-propenilsiringol	LS	the results			
32 siring	galdeido	LS				
96 trans	s-4-propenilsiringol	LS				
49 aceto	osiringona	LS		1		
68 siring	gilacetona	LS	Analytical	time		
13 propi	iosirigona	LS	•			
68 ácido	o hexadecanóico		1) Method	with li		
26 hidro	ocarboneto		-			
49 hidro	ocarboneto		Purify lignii	∩: 4 da`		
42 hidro	ocarboneto					
37 hidro	ocarboneto		Pyrolysis +	GC/IVI		
57 hidro	ocarboneto					
65 hidro	ocarboneto					
000			2) Method	witho		
				WILIIO		
			Extraction:	1 hour		
			Pyrolvsis +	· GC/M		
1						
			com extrativo / sem extrativo /	com extrativo / sem extrativo /		

Similar values relative to the results from purified lignin

Analytical time used: 1) Method with lignin purification Purify lignin: 4 days Pyrolysis + GC/MS = 60 min

2) Method without lignin purification: Extraction: 1 hour Pyrolysis + GC/MS = 60 min

"Mini" UFV Bioen


Gene discovery and functional genomics: urgently needed in sugarcane

10% of plant genome \rightarrow genes to construction and rearrangement of their cell walls Arabidopsis \rightarrow ~ 2500 genes

Sugarcane \rightarrow 4300 genes?

Buckeridge and coworkers: 469 cell wall genes identified in sugarcane (~10%) Gene discovery in sugarcane is needed to further identify other cell wall genes

Simultaneous gene discovery and functional characterization strategy

Research Network USP/Unicamp/ Ridesa-UFV

UFV-Ridesa Sugarcane Breeding and Biotecnology Team

Prof. Marcio Pereira Barbosa Prof. Marcelo Ehlers Loureiro Prof. Andrea Miyasaka de Almeida Francis Lopes (posdoc cell wall) Flaviano Silverio (posdoc pyrolysis GC-MS) Viviane Guzzo de Carli (PhD student full-length libraries-gain of function) Emanuelle Ferreira Melo, (PhD student- full-length libraries-gain of function) David Baffa (MSc student) Abelardo Mendonca (Undergraduate -IC-Fellowship-sugarcane transformation)

UFV-Microbial Physiology Team

Flávia Maria Lopes Passos Luciano Gomes Fietto

USP-Sao Paulo

Glaucia Souza Marcos Buckeridge **USP-Esalq** Helaine Carrier

USP-Lorena Adriane Maria Ferreira Milagres

Unicamp Marcelo Menossi